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ON MECHANISM OF REACTIVE NITROGEN SPECIES FORMATION IN
NEGATIVE POLARITY HIGH PRESSURE GLOW DISCHARGE

Mario Janda®, Nenad Selakovié¢?, Olivera Jovanovi¢?, Neda Babuci¢?, Nikola
Skoro?, Oleksandr Galmiz®, Nevena Puac?

IFaculty of mathematics, physics and informatics, Comenius University in Bratislava, Slovakia
2Institute of Physics, University of Belgrade, Belgrade, Serbia
E-mail: jandal@uniba.sk

Mass spectroscopy (MS) was used for detection of oxygen and nitrogen species produced by negative polarity
high pressure glow discharge (HPGD). Atomic O and N species as well as nitrogen oxides NO and NO, were
detected. It was not possible to detect ions generated in the discharge directly. As shown by chemical kinetic
model, concentration of negative ions is negligible in HPGD because of elevated temperature. Chemical kinetic
model was also used to study formation pathways of species detected by MS.

1. Introduction
Electrical discharges can generate chemically active non-equilibrium plasmas, where electrons have
significantly higher energy than ions and neutral particles. Among the many types of electrical
discharges, low-pressure glow discharges are one of the most common and fundamental, often used
for illumination [1]. While less common and well-known than their low-pressure counterparts, high
pressure glow discharges (HPGD) offer the possibility of removing organic pollutants from exhaust
gases [2]. Furthermore, their stability and efficiency in generating nitric oxide from air make them
useful for nitrogen fixation [3].
HPGD can be ignited between a high-voltage metal electrode and a water surface, with the second
electrode submerged [4]. This configuration, in combination with the generation of nitrogen oxides in
the gas phase, makes HPGD suitable for generating plasma-activated water [5].
Plasma-activated water (PAW) is water that has been exposed to plasma. This exposure infuses the
water with reactive oxygen and nitrogen species (RONS), such as hydrogen peroxide, nitrates, and
nitrites, which temporarily alter the water's chemical properties and make it useful in many
applicationsin food, agriculture, and biomedicine [6, 7]. These possibilities have made PAW a hot topic
in the low-temperature plasma community in recent years.
Despite many studies and obtained results, further researchis crucialfora better understanding of the
formation mechanisms of reactive species, such as nitrogen oxides, and for assessing the role of
different gas-phase species in the formation of aqueous RONS in PAW. From a practical point of view,
this knowledge will allow for increased energy efficiency and selectivity with respect to the desired
products when generating PAW. For this reason, the formation of RONS by HPGD is studied in this
paper, using mass spectrometry (MS) and chemical kinetic modelling. For MS measurements we used
molecular beam mass spectrometer (MBMS) that can sample from atmospheric pressure enabling to
directly access chemical species created in the plasma. In principle the MBMS can detect both neutral
and ionic species but in this study we focused to neutrals.

2. Experimental setup

A schematic diagram of the experimental apparatus is shown in Figure 1. The high pressure glow
discharge was generated by a DC high voltage (HV) power supply (Glassmann PSIWH 20R25) with
negative polarity output, capable of delivering up to 20 kV. The power supply was connected to the
cathodeviaa 1l MQ seriesresistor (R) to limit current. This power supply canalso operate as a stabilized
current source, providing up to 30 mA.

The cathode consisted of a stainless steel needle with a flat tip and an outer diameter of 0.7 mm. The
discharges were generated in dry air from the pressure cylinder (purity 5.0), flowing along the cathode
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towards the anode with the gas flow rate of 0.3-0.45 sIm, controlled by mass controller (Bronkhorst
F201-EV).

For diagnostics of neutral species, a grounded steel ring with aninner diameter of about 4 mm and an
outer diameter of about 8 mm served as the anode. This ring was positioned 5 mm in front of the
entrance to the mass spectrometer, which had an orifice diameter of 100 um. For the measurements
the mass spectrometer front plate with the orifice was grounded. The cathode-anode gap distance
was maintained at 3 mm.

The electrical potential between the cathode and ground was measured using a high voltage probe
(Tektronix P6015A) connected to a digital oscilloscope (Keysight MSOX 3024T).

The MBMS used for measurements (Hiden Analytical HPR 60) was operating in two modes- RGA
(Residual Gas Analyzer) mode, that provides data on the mass spectra of neutrals in the range 0—100
amu; and MID scan, when the device is set to monitor the temporal changes of selected species. In
both cases, for the detection of neutral species a ionization chamber was active with the electron
energy set to 70 eV. The MBMS has an internal shutter — Swagelok that allows recording of the
background signal coming from the gas phase inside the device.

HV DC air inletﬂ
power Mass spectrometer
supply R
<= orifice
@ 100 pm

Fig. 1. A schematic diagram of the experimental apparatus.

3. Chemical kinetic model

The aim of the chemical kinetic model is to calculate density evolution of studied species interacting
via defined set of chemical reactions. For this purpose we used ZDPlasKin module [8] that includes a
Fortran 90 version of the VODE solver for numerical solution of system of ordinary differential
equations [9]. Authors of ZDPlasKin also provide a ready-to-use list of plasma chemical processes in
nitrogen-oxygen mixtures with all necessary rate coefficients [10]. This set of reactions (version 1.03)
includes ~650 chemical reactions among 53 species.

The rate constants of reactions between heavy species from this list are calculated from the
thermodynamic gas temperature T,. The rate constant for electron impact reactions must be
calculated from electron energy distribution function (EEDF) obtained by solving the Boltzmann
equation for free electrons. The ZDPlasKin package includes a Bolsig+ solver [11] for this purpose. A
set of required electron scattering cross sections was taken from the LXCat project database [12].
Finally, ZDPlasKin module requires use of additional subroutines written by user for comprehensive
control of simulation conditions, e.g., changesin the gas temperature, pressure and reduced electric
field. Our physical model has two parts, glow discharge and afterglow. The afterglow part has to be
included because in some experiments, the gas from the discharge did not enter the mass
spectrometer directly, but there was a 5 mm gap between the grounded ring electrode and orifice.
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For modeling of GD we used constant temperature T, = 2000 K, constant pressure of 1 atmosphere
and constant reduced electric field strength E, = 60 Td. We also used constant electron density n. =
1012 cm3. These values were estimated based on previous experimental observations of HPGD [13].In
order to take into account diffusion of species our of the discharge plasma channel and mixing with
the surrounding ambient air, we included a primitive diffusion model in our code. After each
calculationstepwith duration At, concentration of each heavy particle n; is decreased by An; calculated
as

An; = -ag n; At (1)

where ayiis coefficient representing diffusion of particles out of the plasma channel. To keep constant
pressure (total density of particles), the removed particles were replacedby N, and O, molecules (ratio
4:1). This simulates mixing with the ambient air.

In the second part of the model, an afterglow period of 0.2 s, the reduced electric field strength
decreased exponentially to 3 Td with a time constant of 20 ns. Electrons concentration was calculated
dynamically along with the densities of all other species, rather than being held constant. Mixing with
the surrounding air continued during the afterglow phase, leading to a calculated decrease in gas
temperature. Electron diffusion was also incorporated, with a diffusion coefficient ten times higher
than that of the heavy particles.

4. Results and Discussion

HPGD was generated with discharge current of either 2.1 mA, or 3 mA. The applied voltage was -3 kV
and -4 kV, respectively. The discharge voltage (across the gap) decreased from ~1.3 kV to ~1.15 kV
when the HPGD current increased from 2.1 mA to 3 mA. Mass spectra of produced neutral species
were measured forbothdischarge currents. The obtained spectra had the same species visible for both
currents so in Figure 2 we present the data recorded for 3 mA.

The data shows only species created in the plasma as the background signal, recorded in plasma off
conditions, was subtracted. The most abundant species created in the discharge were atoms of H,N
and O and reactive species OH, H;0, NO, H,0, and N,0.

Plasma On - Plasma Off

1000000 ~
N, I current 3 mA
O2
100000 -
— N
2 OH
= 100004 H o NO
7 N,O/
HSO H202 C02
1000 ~
H2
T l T II T T 1 1

0 5 10 15 20 25 30 35 40 45 50
mass (amu)
Fig. 2. Mass spectra of neutral species measured for current 3 mA.
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In the MID scan mode, we monitored temporal changes in the nitrogen species NO, N,O and NO,
important for PAW generation. In Figure 3 we show recorded signals for these species with respect to
different measurements conditions. Measurements were conducted with Swagelok open and with
Swagelok closed. Swagelok open represents the sum of foreground and background species, while
Swagelok closed corresponds to background species only. For the first 6 minutes of recording the
discharge was off so variations in the signal is only due to processes inside the device. Once the
discharge is ignited, increase in NO and NO, signals was due to the species created in the discharge.
Obviously, creationof N,O species was not large so the signal did not change afterdischargeinception.

— Nitric oxide NO \ Nitrogen dioxide NOZ\
25000 - | Nitrous oxide N20O
| PLASMA OFF : PLASMAON  3mA
SL SL+ SL SL
200004 OP, ,OP  OP . oP
1 s . sL W |
150001% CL ,ﬂ J W‘ANMN CL MW

SEM (c/s)

-

10000 I
1

1
5000 MW .MWWWMWWM

()

L)

1

1

—————T——T T
6 8 10 12 14 16 18 20

Recording time (min)
Fig. 3. MID-scan of NO, NO; and N,O species without and with the discharge operating in front of the
MS orifice withaddition of synthetic air. Discharge current was 3 mA. Measurements were perforemed
with Swagelok closed (SL CL) and open (SW OP).

i
i 1
i 1
1 1
0 +——+—4
2 4

In summary, the experimental data confirmed generation of N, O, NO and NO, by HPGD. Chemical
kinetic model using ZDPlasKin module was used to explain their formation. As for example, Figure 4
shows time evolution of N, O, NO, NO, and Os species concentrations in the glow discharge. This
calculation was performed with oz =2 s™.

Our model incorporates diffusion, but the employed calculation approach is simplified, and the exact
value of the diffusion coefficient remains unknown. Instead, we utilize a parameter, a5, to represent
the diffusion rate. We performed several calculations with agg ranging from 0.1 to 10 s™. Since ag
influences the calculated steady-state concentrations of species in the plasma, we cannot definitively
determine the actual concentrations of the studied species in the HPGD. However, we observed that
agi in studied range does not significantly affect the ratio of concentrations of various RONS or their
production pathways.

Figure 4 demonstrates that the concentrations of all studied RONS reach a steady state after
approximately 0.2 ms, remaining constant thereafter. This steady state arises from a balance between
production (through chemical reactions) and removal (via chemical reactions and diffusion).
Consequently, we analyzedthe reaction pathways separately fortheinitial phase of the simulationand
for the subsequent steady state.
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Fig. 4. Time evolution of N, O, NO, NO; and Os species concentration; calculated with o= 2 s™.

In the initial phase (Figure 5), O atoms are mainly produced by reactions of O, with electronically
excited molecular nitrogen species N,* (the most important being N,(B3%), and by electron impact
dissociation of O, molecules:

No* +0, >N, +0+0, (2)
e+0,>e+0+0. (3)

Contribution of other reactions, such as
N+0, >0 +NO (4)
on O atoms production is already quite small.

In the later steady state phase, the production reactions (2-4) are compensated by O atoms
recombination reactions

O+0+M(M=0, 0, N;) >0, +M. (5)

In this simplified O production/removal mechanism we omitted reactions between O, O(*D) and O(1S)
species. An equilibrium between these species is achieved quickly, with O representing more than
99.9% of them.

N atoms are produced mostly by these two reactions:

O(*D)+NO > 0, + N, (6)
N,(a'!)+ NO > N, + N + O. (7)

There is also a third important reaction producing N atoms, electronimpact dissociacion of N,, but it

plays animportantrole atthe very beginning of the simulation (t < 50 ps), when thereis still not enough
NO molecules for N generation by equations (6) and (7).
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Fig. 5. Production of O atoms during the initial phase of the simulation; calculated with ay=2 s™.

In steady state, the removal of NO molecules by N (equations (6) and (7)) is compensated by NO
production via reaction

N +0O; > 0+ NO. (8)

Reactions (6-8) all involve NO, they are crucial not only for N production and losses, but they also
influence the density of NO. Reaction (8) is actually the most important for NO production (Figure 6).
The other two important reactions are

N,(A3) + 0 = NO + N(2D), (9)
N(2D) + O, > NO + N. (10)

Inthe steady state, the productionof NO is compensated by its removal (Figure 7) via reactions (6), (7),
(11) and (12)

NO + N(2D) = N, + O, (11)
NO+N >N, +O0. (12)

NO; is produced almost eclusively by reaction (13) and removed by reaction (14)

0 +NO+M - NO, + M (N, 0,), (13)
0 +NO; > NO +0,. (14)

Steady state NO, concentration [NO,] can be therefore easily calculated as [NO,] = ki3.[NO]/kis,
assuming balance between NO, production and destruction by reactions (13) and (14). In this formula,
[NO] is steady state concentration of NO, ki3 and ki, are rate coefficients of reactions (13) and (14),
respectively. At 2000 K, the ratio of these two rate coefficients is 7.3x10* and it explains why the
steady state concentration of NO; is much lower than the concentration of NO (Figure 4).
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Fig. 6. Main reactions responsible for production of NO molecules; calculated with agz =2 s™.
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Fig. 7. Main reactions responsible for losses of NO molecules; calculated with agz= 2 s™.

Based o ex-situ measurements of the gas after treatment by glow discharge, the concentration of NO
is higher than the concentration of NO,, but the difference is not so significant [3]. Final NO and NO,
concentrationis mainly determined by reactionsin the gas afterleaving the discharge zone (afterglow).
Figure 8 shows time evolution of gas temperature and N, O, NO and NO, species concentrations in the
discharge afterglow, calculated with ag4 = 10 s. The concentration of atomic species (N and O)
decreases rapidly. While the NO concentration decreases slowly, the NO, concentration increases,
despite mixing with the ambient air. Consequently, the difference betweenNO and NO, concentrations
decreases in the discharge afterglow.
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Fig. 8. Time evolution the gas temperature and N, O, NO and NO, species concentrations; calculated
with agg= 10 s

A stable signal fromions directly generated by the HPGD was not detected by mass spectrometry. This
can be attributed to two main factors. Firstly, the HPGD migrated on the surface of the orifice plate
that served asanode, makingits positionrelative to the spectrometer's gas entrance (a 100 um orifice)
highly variable. A stable ion signal could only be observed if the HPGD was positioned directly above
this orifice, which occurred only randomly and occasionally. Secondly, even with the discharge
positioned stably above the orifice, ion detection remains challenging. Positive ions are repelled from
the anode, and the concentration of negative ions within the HPGD is relatively low, according to the
kinetic model. The dominant negative ion, O, has a concentration of approximately 10%° cm?, two
orders of magnitude lower than the electron concentration. This low negative ion concentration may
be due to the elevated gas temperature in the HPGD plasma channel.

5. Conclusions

Fixationof nitrogenfromthe air, convertingitinto reactive compounds, remains a significant challenge
and a hot topic within the low-temperature plasma community. High-pressure glow discharges offer a
stable and efficient means to generate nitrogen oxides, key precursors for nitrogen fixation. This study
investigates the mechanisms of nitrogen oxide generationin an HPGD using a combined approach of
mass spectrometry and chemical kinetic modeling.

Mass spectrometry provided insights into the types of reactive oxygen and nitrogen species produced,
while the kinetic model simulated the complex chemicalreactions withinthe plasma. Ourfindings shed
light on the dominant reaction pathways on nitrogen oxide formation. However, further research is
crucialtorefine our understanding. Future experimental work should focus onimproving the detection
and quantification of reactive species, particularly ions. Model enhancements are also necessary,
including a more accurate representation of diffusion processes and the discharge afterglow phase.
Furthermore, incorporating additional chemical reactions involving water molecules will enable us to
explore the crucial role of humidity in the generation of nitrogen oxides, nitric acid, and nitrous acid.
This comprehensive approach promises to advance our knowledge of nitrogen fixation using HPGD
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and pave the way for the development of efficient and sustainable plasma-based technologies for
fertilizer production and other applications.
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